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Sufficient conditions are obtained for the asymptotic stability under any ini- 
tial conditions for a system controlled by nonlinear feedback conforming to 
the state vector The conditions are stated as explicit analytic relations. The re- 
sults obtained supplement the investigations in [l-3 ] and use the results in [4-3 ], 

1. Statement of the problem. Formulation of the rewltr. Let 
&” be the n- dimensional arithmetic space of points 5 = co1 {zr,. . . .) q}, 
I/ asl 11 be a matrix, 6ij be the Kronecker symbol, and T be the symbol of trans- 

position. Let the indices v and ,u run from 1 to m, the indices i and i from 1 to nv 
and nP,respectively , and the indices 1 and s from 1 to n and m < n . Let A = 

11 A,, 11 denote a block matrix with blocks A,, = 11 Uij”ll, where aijw are ele- 
ments of a block. We examine a controlled object whose motion is described by the 
differential equation with constant parameters 

x’ = Ax + Bu, x E R”, UER” (1.1) 

t E It,, m), x (4)) = x0 

where A and B are ann X n -dimensional matrix and ann X m -dimensional matrix, 

respectively . 

Problem, For system (1.1) let 

u” (5) = M (2) s 

be the control law for which the closed system 

(1.2) 

z’ = As + BM (2) x, 5 (t,) = x0 (1.3) 

is asymptotically stable under any initial conditions to > 0 and I xsD I (N, N 
( CO. Find the conditions that the elements of matrix M (z) satisfy in this connection. 

To solve the problem posed it is necessary to investigate the existence of the func- 
tional 

m 

J(c,U)+ [C(x) + UTU] dt (1.4) 
to 

(6’ (x) is a positive definite function) that the control forces u0 (z) minimize and 
thus optimally stabilize system (1.1) . The inverse problem of optimal control [ 9 ] 
arises in this case. In the present paper the results in [ 5 -8 ] on the inverse problem are 
extended to that of nonlinear control . The basic tool for solving this problem is the 
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cancxric transformation [lo] of the original equations of motion of the controlled object. 
Let for system (1. l), the pair (A, B) be completely controllable and let matrix 

B have full rank. Then according to [ 10 ] the nondegenerate transformations y = TX 
and V = Gu exist for which 

De fin ition. Two performance indices J (Cr, U) and J (c,, U) are said to 
be equivalent if they are minimized by the same control u (3). 

L e m m a. In a performance index J (c’, V) let the function C’ (y) be positive 
definite and let C’ (y) --t uyT,y as.g -+ 0,, where a > O.Then functionalJ (C’, v) 
is equivalent to J (L, v), where 

L(Y) = f’Q (Y) Y$ Q = II d? II 

qua = ~(~)~~~~ + 'h(f -~)~~~~(~)~~ L1 + skn(n, -I- 1 - 

i - i)l + ~~~~~~j-~(~)~~~(~)[~ - sign(h + 1 - i - i)l) fY# Et) 

The Lemma is an extension of the result in [ 8 ] to the nonlinear case and states that 
a functional of a special structure can be selected from the class of equivalent per - 
formance indices. This selection significantly decreases the number of parameters in 
the functional and permits the unique solution of the inverse optimal control problem. 
In particular, for systems with a one-dimensional control the functional J (C’, v) is 
equivalent to a functional J (L, u) with a diagonal matrix Q (y). 

Theorem 1. Let in the control Iaw 

the elements of matrix K be bounded and satisfy the equalities e+) (y) ES $J,c,, (y) 5 
and let the control forces (1.7 ) minimize the performance index J (L, v). Then the 
elements of matrix Q (y) are defined in terms of the elements A$ (y) thus : 

d;v” (Y) = G (Y)l T(Y) = 5k (y) + 2 j_ (- I)h+lE;jh_1 j+.h+.l (y) + (1.8 ) 

(- lFv)+ 11 - sign (n, + 1 - 2i)] k~~i-n~v~_l (y) 
(i > 1, p = v, i = j) 

d~'f(y)= ~(-l)hS?i,i~~(y)t~(-_Ir(P)[l-Qign(n,- i)] X 

%=a 
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x G i-n(p)(Y) (i = O), d&.+1 (y) = 
wL)-j 

x=min(i-l,np-j-l), IIE~~((Y)(I=(A-_HTI)TK(Y)+ 

KT (Y) (A - HTO -t KT M K (?I), *d = II Gs 117 1 = II b1 II 

Another result concerning the inverse optimal control problem for a linear stationary 

system with nonlinear control was obtained in [ 111. 

Theorem 2. Let the hypotheses of Theorem 1 be fulfilled and Q (K, Y) be a 
matrix whose elements are calculated by (1.8). If the matrix Q (K, y) + K ‘1’ (y) 

K (y) is positive definite, the control forces (1.7 > stabilize system (1.5 > under any 
initial conditions (1.6 > . 

The latter assertion is a sufficient condition of asymptotic stability for the system 

y’ = Fy + HK ( y y under any initial conditions (1.6 ) . > 

2. Proof of the results. Proof of the Lemma. Let the equalities 

UT AP (x) = 0, AT AP (x) + AP (x) A + A,7 (x) = 0 (2.1) 

be valid for the symmetric n X IZ -matrices AP (x) and AS (x),Then the functional 
J (C $- xTL\Sx, u) is equivalent to functional (1.4). Indeed, the minimum of the 

first is achieved for 

where I” (2) is the Bellman function in the case of steady-state motion. With due re- 

gard to (2.1) the last relation can be rewritten as 

11’ (z) = -B”P’ (cr)c, cz* {AT [P’ (z) - AP (z)] + [P’ (x) - AP @)]A -I- (2. 2, 

[P’ (rr) - AP (z)]BBT [p’ (s) - Ap (x)1) i ~2 (x) = 0 

by setting ai-‘ion = zTp’ (z), where I” (.z) is a positive definite symmetric n x n - 

matrix. Analogous relations can be obtained in the minimization of functional (1.4). 

By comparing them with (2.2 ) we obtain P’(r)- AP(x) F= P(z), whence, with due re - 
gard to (2. l), follows U’ (r)--By [p (cc) i- AP (z)]t = /i(r). 

We need to show that J (,5. U) exists among the functionals equivalent to 
J (C’, L?). tit C’ (y) ~~- yT S’ (y) y ; we set Q (y) = S (y) -j- AS’ (y). where 

the elements of matrix A,$” (y) are found from the equalities ALi’~:~:j (y) =- Ap&, 

(y) =Z 0 and Ay;!,; (y) -t A&!_i (y) + A$! (ZJ) = 0, which are the analogs 
equalities (2.1) taken element by element. In the last equalities there are zyCcL 

(nv - 1) (5 - 1) + z, (ny - 1) n, / 2 arbitrary elements Apij’I” (y). When 
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matrix Q (yf has the form given in the Lemma * 

Proof of Theorem 1. The optimal control 

u (Y> = -HT P (yj y, yT (P P (y) + P (Y) F + Q (Y) - (2.3 > 

P (~1 HP P (~1) Y = 0 

is obtained for system (1.5 ) and performance index J (L, v): . Let matrix Q 0) be 
calculated by formulas (X,8 f for a specified v” (y). Then the matrix P = I] pffv f] 
calculated by the formulas 

satisfies (2.3 ) and Z.Y (y) = v” (y). The theorem is proved, 

Pro of of T he o r e m 2, Proof of the last statement reduces to verifying the 
~lfilment of the hypotheses of Theorem IV in [4 1. From Theorem 1 it follows that 
when A (y) = .f Q W-7 II) Y the equality dW t c3.q Wg + Hv” (y)l +- V& (y) 

+ V, [u” (y)]T v* (y) = 0 is fulfilled, where dl/lr / ay = yT P (y), the ele - 
ments pijw (y) are calculated by (2.4 > and the inequality $w / 8~ (Fy + Hu) 

+ ‘/a.& (y) f r/&r u > 0 is valid for any number v, , 
When the theorem ‘s hypotheses are fulfilled the fun&ion yT lQ (K, y) + KT (y) 

li: (Y)] y is positive definite and, consequently ,so is the function w (y) = min J 
(L, U) = J (yTQ (irir, y) y, u” (y)). Thus, all the hypotheses of Theorem IV in [4] 

are fulfilled ; consequently , the control law (1.7 ) optimally stabilizes system (1.5 ) re- 
lative to performance index J (L, v) under any initial conditions (1.6). The theorem 
is proved. 

3, Exampter, I”, We consider a system with a one-dime~ional control 

It is required to find conditions on the function (p(5) = f(s)/@ and the parameters a, 
for which system (3,X) is asymptotically stable under any initial conditions (3.6 1. ‘I’o 
obtain the results we reduce the control ~3~ (Y) to the form u* (3) = kT (-gfg* where 
k= (y) ==e tp fa)a? We noted earlier that the matrix Q id in functional J (L, u) 

can be chosen to be diagonal 1 Q = diag f&, . . . , t&f. Then from (1.3 ) follows 
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y, = a,2 -+ 2 j. (-l)h+l~s-h-l~s+h+~ ts > I) 

From Theorem 2 it follows that system (3.1) is asymptotically stable under any initial 
conditions (1.6 ) if the inequalities dl (y) > 0, . . ., d, (y) > 0 are fulfilled, From 
these inequalities follow the inequalities 9, (o) > 0, cp (a) > +3,/y, or ‘p (u) > P, 
where I = max (0, --&/Yr, - . ., -@Jz~YII). Hence, with due regard to the constraints, 
we obtain 

(3*2) 

Thus, conditions (3,2 ) yield the solution of the problem posed. 

N ote. In the general case it is necessary to examine all the inequalities under 

which the conditions d, (y) > 0 can be fulfilled. However, in the example analyzed 

we can restrict ourselves to just the inequalities determined, first of all, by the inequality 
Cp (o) > 0 or f (~)/a > 0, since the opposite inequalities ‘p (0) < 0 and? (a) < - 

b,iY, can be reduced to the previous ones by the following changes of signs : U* = -.--a, 
u* = -St @,* =i 

> --8,*h,*. 
-hl Ys* = Ystand ‘p* (o*) = -f (C)/U,i.e.,cp* (u*) > 0 a&q* (a*) 

2 t For Bulgakov ‘s first problem [ 2 ] we have the equations 

T”$” + U$’ + p = 0, p”’ = f (0) (3.3) 
o = a+ + E$,‘ - f-1p, w (to) = 90 

9’ (Lo) = $0’9 P (to) = POl to a 0 (3.4) 
(I*ol, I$o’It II”oIl<~ 

After reducing (3.3 ) to form (3.1) we obtain 

To simplify the final result we take advantage of the obvious propertyr the optimal con- 
trol problem for system (3.1) relative to the performance index f (c’, 21 + aTy), where 

a = co1 (a,, . . ., a,), 
y’ = (F’ 

is equivalent to the optimal control problem for the system 

- haT)y -I- hy relative to the performance index J (C’, v). Then for 
Bulgakov’s problem we obtain 

co 

J (L, 1’) = + 
s 

Id, (Y) YI’ + d, (!I) ~2 + 4 (~1 ya2 f ~“1 dt 

0 

System (3.3 ) is asymptotically stable under any initial conditions (3.4 ) if the inequalities 
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4 (Y) > 0, 4 (Y) > 0, 4 (Y) > 0 or %’ - %%i > 0 and ‘p (a) > max (0, 
-‘2%/as’) are fulfilled. Finally, we obtain the conditions 

A comparison of the last result with others for the same problem showed that the result- 
ing stability boundaries are wider than those in [ 2 1, This result was simple to derive 
since the basic inequalities do not contain arbitrary constants and complex quantities. 

The latter facilitates the derivation of numerical results. 
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